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Weakly non-Boussinesq convection and convective overshooting in a gaseous spherical shell

Motivation

Solar-type stars with outer convection zones
Image of the Sun (SDO gallery).

Image credit to ESA/NASA SOHO.

� Solar-type stars have
thin outer convection
zones (CZ) lying on top
of a stable radiative
zone (RZ).

� Nuclear burning in the
core provides fixed flux
of energy that must be
transported to the
surface.
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Spherical shell geometry

� The simplest possible model is
two concentric spherical shells
with fixed flux coming through
the inner boundary.

� Two cases studied:

I convection only
I convective overshooting
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Part I
Weakly non-Boussinesq convection in a gaseous

spherical shell
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Dimensional SV Boussinesq equations ∗ in a gaseous
spherical shell

Let T = Trad(r) + Θ(r , θ, φ, t), then:

∇ · u = 0,

∂u

∂t
+ u · ∇u = − 1

ρm
∇p + αΘger + ν∇2

u,

∂Θ

∂t
+ u · ∇Θ + ur

(
dTrad

dr
−

dTad

dr

)
= κ∇2Θ,

and

ρ/ρm = −αΘ, and dTad/dr = −g/cp
∗

Spiegel and Veronis, Astrophys. J. 131, 442 (1960)
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Radiative temperature gradient

−4πr 2κ
dTrad

dr
= L? ⇒

dTrad

dr
∝ 1

r 2
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Non-dimensional Boussinesq equations in a gaseous
spherical shell

We then non-dimensionalize the problem by using the outer radius
[l ] = ro as the lengthscale, [t] = r2

o /ν as the timescale, [u] = ν/ro

as the velocity scale and [T ] = |dTrad/dr − dTad/dr |
∣∣∣∣
r=ro

ro as the

temperature scale.
The non-dimensional equations are:

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p +

Rao
Pr

Θer +∇2
u,

and
∂Θ

∂t
+ u · ∇Θ + β(r) ur =

1

Pr
∇2Θ.
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Non-dimensional quantities

� the Rayleigh number and the Rayleigh function

Rao =

αg

[∣∣∣∣dTrad

dr
− dTad

dr

∣∣∣∣]
r=ro

r4
o

νκ
,Ra(r) =

αg

∣∣∣∣dTrad

dr
− dTad

dr

∣∣∣∣ r4
o

νκ

� the Prandtl number
Pr =

ν

κ

�

β(r) =

dTrad

dr
− dTad

dr[∣∣∣∣dTrad

dr
− dTad

dr

∣∣∣∣]
r=ro

= −Ra(r)

Rao
⇒ β(r) =

1− χ− (1/r)2

χ
,

where

χ =

[∣∣∣∣dTrad

dr
− dTad

dr

∣∣∣∣]
r=ro

/∣∣∣∣dTrad

dr

∣∣∣∣
r=ro
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Profile of β(r) - Model A
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� In a Cartesian geometry β = −1.

� In a spherical shell χ = 1 and
β = −1/r2 for liquids (i.e. when
dTad/dr = 0), so there is still the
effect of sphericity.

� dTad/dr 6= 0 enhances that effect
(while χ becomes smaller).

� In a weakly compressible spherical
shell, the Rayleigh function is NOT
constant unlike in Rayleigh-Bénard
convection.

What is the effect of a varying β(r) then?
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Numerical simulations

� 3D DNS solving the Boussinesq equations in a spherical shell
with ri = 0.7 and ro = 1.
(PARODY code)†

� Stress-free boundary conditions for the velocity.

� Fixed flux at the bottom:

∂Θ

∂r
= 0|r=0.7 and

fixed temperature at the top: Θ = 0|r=1.

� Rao = 107, Pr= 0.1

†
Aubert, J., Aurnou, J., & Wicht, J. 2008, Geophysical Journal International, 172, 945
Dormy, E., Cardin, P., & Jault, D. 1998, Earth and Planetary Science Letters, 160, 15
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Velocity slices snapshots

χ = 0.1 χ = 0.5
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Kinetic Energy profiles
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Figure: a) Kinetic energy plot with respect to time for Rao = 107, Pr= 0.1 and three different χ. The system has

reached a statistically steady state and it has thermally relaxed. b) Time-averaged kinetic energy for Rao = 107

and Pr= 0.1.
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Square of the non-dimensional buoyancy frequency profile

N̄2(r) = (β(r) + dΘ̄/dr)
Rao
Pr

(solid lines) along with the radiative

buoyancy frequency N2
rad(r) = β(r)

Rao
Pr

(dashed lines)
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1. What are the properties of this slightly subadiabatic region
emerging close to the outer boundary?

2. Which of the physics elements lead to the subadiabatic layer?

→ Is it related to the varying Rayleigh function configuration
of Model A?

Now, let’s create a new model, Model B, where we have a
constant Rayleigh function across the shell.
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Spherical shell with a constant Rayleigh function

We can create a constant Rayleigh function across the shell by
varying the thermal expansion coefficient α(r)/αo such that:

Ra(r) = −
α(r)g

(
dTrad

dr
− dTad

dr

)
r4
o

κν
= −Rao ·

α(r)

αo
· β(r) = Rao ,

as long as
α(r)

αo
= − 1

β(r)
,

where β(r) =
1− χ− (1/r2)

χ
as in Model A.
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KE profiles - Model A
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KE profiles - Model A and B
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Mean kinetic energy E vs. bulk Rayleigh number Rab

E = C (Pr, ri/ro)Ra0.72
b ≈ 3.7Ra0.72

b , Rab =

∫ ro
ri

Ra(r)r2dr∫ ro
ri

r2dr
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Model B, χ=0.5

Model C, χ=0.01, χ=0.1

fitted curve
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Square of the non-dimensional buoyancy frequency profiles

N̄2(r) =
α(r)

αo

(
β(r) +

dΘ̄

dr

)
Rao
Pr

compared with the background

N2
rad =

α(r)

αo
[β(r)]

Rao
Pr

‡
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‡
In this setup all the simulations have the same background N2

radPr/Rao = −1 regardless of χ.
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Velocity uφ snapshots and kinetic energy for χ = 0.01
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Convection is a very
non-local process!!
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Results implicitly related to the choice of BCs on Θ:

� Flux at ri : dΘ/dr |ri = 0⇒ Flux at ro : dΘ/dr |ro = 0 when the
system is in thermal equilibrium.
 FT = 0 in equilibrium ⇒ turbulent flux+diffusive flux= 0 ⇒

F̄turb =
1

Pr

dΘ̄

dr
:

N̄2(r) =
α(r)

αo
[β(r) + dΘ̄/dr ]

Rao
Pr

=
α(r)

αo

[β(r) + PrF̄turb]
Rao
Pr
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Solar-like β(r) profile
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N̄2(r)Pr/Rao profile for Rao = 107

subadiabatic layer still exists, now closer to the inner boundary!
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Summary

� The mean kinetic energy depends solely on the bulk Rab such
that E ∝ Ra0.72

b .

� Emergence of subadiabatic region due to:
1. mixed temperature boundary conditions,
2. sufficiently turbulent flows (high Ra),
and enhanced by:
3. large superadiabaticity contrast (i.e. strongly varying β(r)
(low χ)).

� Convection vigorous everywhere: highly non-local convection!
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Part II
Convective overshooting and penetration in a

spherical shell
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Overshooting and penetrative convection

� In solar-like stars the bottom of the CZ is not
impermeable but instead it sits on top of a
stable RZ.

� Convective eddies can propagate into the RZ
through inertia, which is commonly referred
to as overshooting.

� This can cause both chemical and thermal
mixing.

� Past studies distinguish between two regimes:
1) overshooting: plumes only mix chemical
species
2) penetrative: the effect is so strong as to
extend the CZ (beyond what linear theory
predicts).
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Spherical shell and BCs

� fixed flux at the inner boundary
at ri = 0.2

� fixed temperature at the outer
boundary at ro = 1

� CZ-RZ interface located at
rt = 0.7
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Non-dimensional Equations

The non-dimensional equations are as before:

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p +

Rao
Pr

Θer +∇2
u,

and
∂Θ

∂t
+ u · ∇Θ + β(r) ur =

1

Pr
∇2Θ,

where now β(r) is chosen such that we have:

- a convectively stable RZ for r < 0.7

- a convectively unstable CZ for r ≥ 0.7.
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Profile of β(r)

stiffness parameter S : defines how stable the RZ is to convection.

transition width dout : defines the steepness of the transition slope
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Non-dimensional quantities

� The Rayleigh number and the Rayleigh function

Rao =

αg

[∣∣∣∣dTrad

dr
− dTad

dr

∣∣∣∣]
r=ro

r4
o

νκ

Ra(r) = −
αg

(
dTrad

dr
− dTad

dr

)
r4
o

νκ

� Pr= ν/κ = 0.1 for all the simulations.

� β(r) is also β(r) = −Ra(r)/Rao .

Note: When Ra in the CZ increases, the RZ becomes more stable.
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Meridional velocity snapshots for S = 5, dout = 0.003 and
Rao = 107
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KE for S = 5, dout = 0.003 and Rao = 107
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Log plot of Ēk

� Looks like a Gaussian
below rt = 0.7

� Gaussian fit function

f (r) = A exp

(
−
(
r − 0.7√

2δG

)2
)

� A is the amplitude of the Gaussian.

� δG is the width of the Gaussian
which gives a relative measure
of how far the turbulent convective
motions can on average
travel into the stable RZ.
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Kinetic Energies Ēk for all the different input parameters

� mean kinetic energy in the CZ depends only on the bulk Rab.
� Ēk scales like a Gaussian right below the bottom of the CZ for

all the different simulations.
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Prediction of the Gaussian amplitude A

f (r) = A exp

(
−
(
r − 0.7√

2δG

)2
)

, A ≈ ECZ = 3.7Ra0.72b
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o
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A=E
CZ
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δG against dout and S

δG depends on the input parameters S , dout , and Rao

But, can we also predict δG a priori?
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Energetic argument for calculation of δ

Take a plume that starts from the base of the CZ with a mean KE of the
CZ and travels inertially and adiabatically downward.
At the point at which Kinetic Energy=Potential energy, it will turn around!
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� Non-dimensionally, ECZ = −Rao
Pr

Θδen

� But ECZ ≈ 3.7Ra0.72
b and Θ ≈ Θad.

� 3.7Ra0.72
b = δen

Rao
Pr

∫ 0.7

0.7−δ
β(r)dr

� δG = 1.2δen

If the energetic argument is correct→ any lengthscale will scale like δen!
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Auto-correlation function for the downflows

C(δ) =
1

4π
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t1
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Back to Ēk

- The Gaussian part of Ēk stops where δucor is defined!
- After that point, Ēk decays exponentially.
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Penetrative convection

Standard cartoon picture of penetrative convection

� change of thermal stratification
in the RZ, and

� extension of the CZ into the
RZ
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Is convection penetrative?

S = 5, dout = 0.003 and Rao = 107
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No penetration... But there is partial thermal mixing in the RZ! 40
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Temperatures for S = 5, dout = 0.003 and Rao = 107

Θ̄down : mean temperature of the downflows
Θ̄up : mean temperature of the upflows
Θad : adiabatic temperature
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� Downflows carry cold material

downward.

� They heat up while in the RZ
due to adiabatic compression.

� Then they decelerate and
match the mean temperature.

� Upflows have the exact
opposite behavior.

δΘ gives a new lengthscale for thermal mixing!
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Temperatures for S = 5, dout = 0.003
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Thermal mixing in the RZ
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Thermal mixing in the RZ

� With higher Rao , the thermal
mixing is shallower but more
efficient!

� If we then increased Rao , could
we finally see pure penetration?
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Comparison of the different lengthscales

All the different lengthscales scale well with δen!
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Conclusions

� No pure penetration, but not just overshooting either:

 Intermediate regime where there is
partial thermal mixing in the RZ!

� The kinetic energy scales like a Gaussian below rt = 0.7.

 We can actually model that region!

� All the different lengthscales scale well with δen.

 Then, we can predict δΘ,ucor ≈ 3δen, and δG = 1.2δen.

46



Weakly non-Boussinesq convection and convective overshooting in a gaseous spherical shell

Future goals

Models of the interior of the Sun rely on having a primordial magnetic

field in the RZ.

Figure from Gough & McIntyre (1998) paper

� Add magnetic field in the RZ.

� Study the interaction of the field with
the turbulent motions:

1. Can the field confine the overshooting
motions from going deeper in the RZ?

2. Can these motions halt the magnetic
field from diffusing outward into the
CZ?
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Thank you for your attention!

Questions?
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...Extra slides...
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κ∇2Trad = −H(r). (1)

BCs:

−κ
dTrad

dr

∣∣∣∣
r=ri

= Frad, T (ro ) = To . (2)

Integrating equation (1) once yields

κ
dTrad

dr
+ Frad = −

∫ r

ri

Hdr, (3)

hence we can generate any functional form we desire for dTrad/dr with a suitable choice of H(r).
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